CFD modeling and control of a steam methane reforming reactor

نویسندگان

  • Liangfeng Lao
  • Andres Aguirre
  • Anh Tran
  • Zhe Wu
  • Helen Durand
  • Panagiotis D. Christofides
چکیده

This work initially focuses on developing a computational fluid dynamics (CFD) model of an industrialscale steam methane reforming reactor (reforming tube) used to produce hydrogen. Subsequently, we design and evaluate three different feedback control schemes to drive the area-weighted average hydrogen mole fraction measured at the reforming tube outlet ( x̄H outlet 2 ) to a desired set-point value ( x̄H set 2 ) under the influence of a tube-side feed disturbance. Specifically, a CFD model of an industrial-scale reforming tube is developed in ANSYS Fluent with realistic geometry characteristics to simulate the transport and chemical reaction phenomena with approximate representation of the catalyst packing. Then, to realize the real-time regulation of the hydrogen production, the manipulated input and controlled output are chosen to be the outer reforming tube wall temperature profile and x̄H outlet 2 respectively. On the problem of feedback control, a proportional (P) control scheme, a proportional-integral (PI) control scheme and a control scheme combining dynamic optimization and integral feedback control to generate the outer reforming tube wall temperature profile based on x̄H set 2 are designed and integrated into real-time CFD simulation of the reforming tube to track x̄H set 2 . The CFD simulation results demonstrated that feedback control schemes can drive the value of x̄H outlet 2 toward x̄H set 2 in the presence of a tubeside feed disturbance and can significantly improve the process dynamics compared to the dynamics under open-loop control. & 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD-simulation of membrane reactor for methane steam reforming

A membrane reactor is a reaction system that provides higher productivity and lower separation cost in chemical reaction processes. In this paper, packed bed catalytic membrane reactor with palladium membrane for methane steam reforming was analyzed both experimentally and numerically. The numerical model consists of a full set of partial differential equations derived from conservation of mass...

متن کامل

Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shi...

متن کامل

Methane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method

An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...

متن کامل

Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the ...

متن کامل

Hydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study

Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016